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Abstract. The extended third-order nonlinear Schrödinger equation and its solutions are studied on the
basis of Galilean transformation and generalized Galilean invariance.

PACS. 42.65.Tg Optical solitons; nonlinear guided waves – 52.35.Mw Nonlinear phenomena: waves, wave
propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects,
etc.)

1 Introduction

We consider extended third-order cubic nonlinear
Schrödinger (ENLS) equation

i∂TΨ +
1
2
∂2

XΨ + |Ψ |2 Ψ + iα1 |Ψ |2 ∂XΨ

+ iα2Ψ∂X |Ψ |2 + iα3∂
3
XΨ = 0 (1)

with real αn(n =1, 2, 3). It describes the slow evolution of
the wave envelope in nonlinear dispersive systems, taking
into account lowest order dispersion corrections, and plays
an important role in many areas of nonlinear physics, in
particular in nonlinear fiber optics [1,2]. In that context
T denotes the distance along the fiber, while X is related
to the retarded time. At

αn = 0, (2)

equation (1) turns into the regular nonlinear Schrödinger
(NLS) equation which is integrable by the inverse scatter-
ing method (ISM). The “extra” terms are important for
ultra short pulses (e.g., in the femtosecond range). For the
particular cases

α1 = 6α3, α2 = 0, (3)
α1 = 6α3, α2 = 3α3, (4)

equation (1) is also integrable. Hirota [3] has found
complex N - soliton solutions in case (3) and Sasa and
Satsuma [4] have shown the integrability of equation (1)
in case (4) by means of the ISM. Not only these integrable
cases, but also some other solutions of the ENLS equations
with both periodic and vanishing (at infinite X) boundary
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conditions appear to be rather instructive for the under-
standing of general phenomena in systems with high order
dispersion (HOD). This includes, for example, the ques-
tion of the integrability conditions of systems with HOD.

It is well known that the regular NLS equation is
Galilean invariant and the Galilean transformation (GT)
is an important tool for obtaining and interpreting the
general solution of NLS equation. The GT can be general-
ized to HOD systems, in particular to ENLS equation (1).
In this paper we demonstrate that the generalized GT
permits consideration of many properties and solutions of
the ENLS equation from a single point of view. By means
of GT, such problems as the derivation of solutions for
solitary and periodic waves, integrability condition, self-
similar solutions, etc. can be simplified to a great extent.
The main purpose of the present work is to give a review
of important features of the ENLS equation using the GT.

The paper is organized as follows. In Section 2 we de-
scribe the GT and formulate the property of generalized
Galilean invariance. The basic solutions of ENLS equa-
tion, describing solitary and periodic waves, are derived
in Section 3. They are investigated, first, in intrinsic ref-
erence frames; then GT leads to corresponding solutions
of equation (1). This approach is used also for radiating
solitons that play an important role in the evolution of
nonlinear pulses. As was shown in reference [5], the ra-
diating soliton can be obtained from a periodic wave by
means of the cut-off operation. Performing this in the in-
trinsic frame of reference we come to a visual picture of
the soliton radiation and find its definitive characteristics
(wave number, frequency, group velocity, amplitude). In
Section 4 we first derive a necessary condition of the in-
tegrability of ENLS equation. It consists of the existence
of a reference frame where the ENLS equation takes the
form of complex modified Korteweg-de Vries (CMKdV)
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equation. Further reasoning leads to the conclusion that
both equations, ENLS and CMKdV, are integrable only
in cases considered by Hirota and Sasa-Satsuma. In Sec-
tion 4.2 it is also demonstrated that the Potasek-Tabor
solitons are not the only soliton solutions of the ENLS
equation; this is sometimes ignored. The self-similar solu-
tions of ENLS equation are considered in Section 5. The
Laurent expansions of self-similar solutions are derived in
cases (3) and (4) which are, as it was mentioned, the only
integrable cases of ENLS and CMKdV equations.

2 The Galilean transformation

The transformation

Ψ(X,T ) = ψ(x, t) exp[i(KX −ΩT )], (5)

where

x = X − V T, T = t, (6)

V = K − 3α3K
2, (7)

Ω =
1
2
K2 − α3K

3, (8)

transforms equation (1) into

i∂tψ +
1
2
A2∂

2
xψ + q |ψ|2 ψ + iα1 |ψ|2 ∂xψ

+ iα2ψ∂x |ψ|2 + iα3∂
3
xψ = 0, (9)

with

A2 = 1 − 6α3K (10)

and

q = 1 − α1K. (11)

Equation (5) describes the Galilean transformation (GT).
As far as equations (9, 1) have the same form, one can say
that the ENLS is Galilean invariant in generalized sense. It
is convenient to look for solutions in the intrinsic reference
frames starting from equation (9) and then to find the
corresponding solution of ENLS equation by means of GT.

3 Solutions of the ENLS equation

3.1 Potasek-Tabor solitons

Let us try to find the solutions of equation (9) which have
the form

ψ (x, t) = f (x− ut) exp [−iϕ (t)] , (12)

where function f(y) and its derivatives vanish at |y| → ∞.
Substituting (12) into (9) we arrive at

f = a sec h [b (x− ut)] , (13)

b2 =
α1 + 2α2

6α3
a2 (14)

u = α3b
2, (15)

ϕ (t) =
1 − 6α3K

2α3
ut+ const., (16)

K =
α1 + 2α2 − 6α3

12α2α3
. (17)

These formulae determine the solution in an intrinsic
frame. The corresponding solution of equation (1) is ob-
tained by means of Galilean transformation (5–8) with ve-
locity V expressed through K by equation (7). This gives

Ψs = a sec h
[
b
(
X −X(0) − VsT

)]
× exp

[
i
(
κX − ωT −X(1)

)]
, (18)

where κ = K and Vs = V + u is the soliton velocity in
the “laboratory” frame and ω the soliton frequency in this
frame:

Vs = κ− 3α3κ
3 + α3b

2, (19a)

ω =
1
2
κ2 − α3κ

3 − 1 − 6α3κ

2
b2. (19b)

These equations, describing simplest soliton solutions of
equation (1), were obtained by Potasek and Tabor [6]
by some different approach and will be called the
Potasek-Tabor (PT) solitons.

At α3 = 0 the PT solitons do not exist. At α2 = 0
the PT solitons exist only at α1 = 6α3. In this case κ is
arbitrary and

a = b. (20)

In reference [6] there were also found other families of
steady solutions of ENLS equation (e.g., vanishing only
at x→ ∞, etc.); we shall not discuss them here.

3.2 Solutions of ENLS equation with periodic
boundary conditions

Consider the solutions of equation (9) of the form

ψp (x, t) = Φ (x) exp
[
i (1/2)λ2t

]
, (21)

where the subscript p means that we impose the periodic
boundary condition

Φ
(
x− π

Γ

)
= Φ

(
x+

π

Γ

)
. (22)

Substituting (21) into (9), we have the following equation
for the function Φ (x)

1
2
A2∂

2
xΦ+ q |Φ|2 Φ+ iα1 |Φ|2 ∂xΦ

+ iα2Φ∂x |Φ|2 + iα3∂
3
xΦ =

1
2
λ2Φ. (23)
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Equations (23, 22) constitute a nonlinear eigenfunction
problem with the eigenvalue λ2/2. It can be solved nu-
merically by means, e.g., of a kind of shooting method.

At sufficiently small parameter α3, one can develop an
approximate analytical approach considering, first, equa-
tion (9) without the third derivative term, i.e.,

i∂tψ̃ +
1
2
A2∂

2
xψ̃ + q

∣∣∣ψ̃∣∣∣2 ψ̃ + iα1

∣∣∣ψ̃∣∣∣2 ∂xψ̃

+ iα2ψ̃∂x

∣∣∣ψ̃∣∣∣2 = 0. (24)

It has soliton solution of the form

ψ̃s (x, t) = us (x) exp
[
iφs (x) + i (1/2)λ2t

]
, (25a)

us (x) → 0, |x| → ∞. (25b)

Substituting this into (24) we find

us (x) = λ

√
2p
q

[
cosh

(
2λ√
A2

x

)
+ p

]−1/2

, (26)

φs (x) = −α1 + 2α2

2B
arctan

[√
1 − p

1 + p
tanh

(
λx√
A2

)]
+ φs(0), (27)

where

p =

√
A2

4B2λ2 +A2q2
q, (28)

B2 =
4α1 (α1 + 2α2) − (α1 + 2α2)

2

12

=
(α1 + 2α2) (α1 − (2/3)α2)

4
. (29)

The soliton amplitude is expressed by

u0 = λ

√
2p

(1 + p) q
, (30)

and the soliton width is

δ =
√
A2/λ. (31)

Assume, in addition to the smallness of α3, that

δ � 2π/Γ. (32)

Then the full solution of equation (23) inside the period

(−π/Γ, π/Γ ) (33)

may be written as

Φ (x) = us (x) exp [iφs (x)] + f(x), (34)

where f(x) is small, near the ends of the period (33). So,
from equation (23), we arrive at the following linear equa-
tion for f

iα3f
′′′ +

1
2
A2f

′′ − 1
2
λ2f = 0. (35)

Fig. 1. Contours C1 and C2 in the complex plane.

From this it follows that near the ends of the period (33)

f (x) ≈ const.× exp (ikx), (36)

where k is a root of cubic algebraic equation

2α3k
3 −A2k

2 − λ2 = 0. (37)

At small α3, the roots of equation (37) can be written as

k = k1,2 ≈ ±i λ√
A2

, (38)

k = k3 ≈ A2/2α3. (39)

The pair of imaginary roots (38) relates to the asymptotic
behavior of the soliton pulse, following from (26), while
the root (39) represents the wave number in (36). At con-
dition (32), the central pulse is close to the soliton (26)
situated on the pedestal wave (cf. Ref. [5], Fig. 1)

f (x) exp
(
i
λ2

2
t

)
. (40)

The frequency of the pedestal wave is

ω = −λ2
/
2 (41a)

and the wave number is the real root of equation (37);
at small α3 it is approximately expressed by (39). Equa-
tion (37) can be written as

ω (k) = (1/2)A2k
2 − α3k

3, (41b)

which is nothing but the dispersion relation for the
pedestal wave. The corresponding group velocity U(k) is

U (k) = dω
/
dk = A2k − 3α3k

2. (42a)

Using (39) we have

U (k) ≈ − A2
2

4α3
. (42b)

Therefore

sgnU (k) = −sgnk = −sgnα3. (43)
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3.3 Soliton-pedestal interaction

It is important that the soliton and the pedestal wave have
the same frequency −λ2/2. Therefore they resonantly in-
teract; this leads to the resonant emission and absorption
of the pedestal wave by the soliton. In the steady wave
that we consider now, emission and absorption are bal-
anced. The amplitude of pedestal, in a predominant part
of period, is equal to const. in (36); it is determined by
the strength of soliton-pedestal interaction. The follow-
ing analysis is based upon a model developed in refer-
ences [7,8].

The factor depending on x in (25a) can be written as

us(x)eiφs(x) = u0e
iφs(0) exp


i

x∫
0

dx′Q(x′)


 , (44)

where

Q(x) = −iu
′
s(x)
us(x)

+ φ′s(x), φ′s(x) = −α1 + 2α2

2A2
u2

s(x).

(45)
We may call Q(x) the soliton local wave number. In a sim-
ilar way we define the local wave number of the pedestal

k̃(x) = −if
′(x)
f(x)

. (46)

If the point x is far enough from the soliton, the function
f(x) satisfies equation (35). Then

k̃(x) ≈ k. (47)

The pedestal-soliton interaction, resulting in the absorp-
tion and emission of pedestal wave by the soliton, math-
ematically displays itself in that Q(x) and k̃(x) can be
regarded as two branches of one analytic function. Near
the branch point x0, where

Q (x0) = k̃(x0), (48a)

the soliton-pedestal coupling is most intensive. If the root
of equation (48a) is real the soliton “sinks” into the
pedestal; so their distinction is impossible. It becomes pos-
sible only if x0 is complex and Imx0 has a proper sign (see
below). The coupling decreases with the increase of |Imx0|.
The analytical (asymptotic) description becomes compar-
atively simple only at sufficiently large |Imx0|. If equa-
tion (48a) has several roots, the main contribution to the
coupling comes from the smallest |Imx0|. At sufficiently
large k we can use (47) even in complex plane; then, with
asymptotic accuracy,

Q(x0) ≈ k. (48b)

Introducing
x0 = iz0 (49)

and using (26), (45) we solve equation (48b) to obtain

z0 ≈ ±π
√
A2

4λ

(
1 +

2
π

arcsinp+
2
π
ζ

)
, (50)

where ζ is the root of equation

λ√
A2k

(
cos ζ − p sin ζ√

1 − p2
+

√
α1 + 2α2

α1 − (2/3)α2

)
=

sin ζ − p(1 − cos ζ)√
1 − p2

. (51)

Solving (51) at √
A2 |k|
λ

� 1, (52)

we have

ζ =
λ√
A2k

(
1 +

√
α1 + 2α2

α1 − (2/3)α2

)
+O

(
p√

1 − p2

λ2

A2k2

)
.

(53a)
This expression was obtained if, in addition to (52),

√
1 − p2 � λ√

A2 |k|
. (53b)

In the opposite case

√
1 − p2 ∼ λ√

A2 |k|
, or

√
1 − p2 � λ√

A2 |k|
, (54a)

we take into account the terms O
(
ζ2
)

in equation (51).
Then we arrive at quadratic equation

γζ2 + 2(1 + βγ)ζ − 2βS = 0, (54b)

where

β =
λ√
A2k

, γ =
p√

1 − p2
, S = 1 +

√
α1 + 2α2

α1 − (2/3)α2
.

This gives

ζ =

√
(1 + βγ)2 + 2βγS − (1 + βγ)

γ
. (54c)

The chosen root of equation (54b) turns into (53a) at
γ ∼ 1.

At small
√

1 − p2 we shall consider only p ≈ +1. At
p ≈ −1 the soliton-pedestal interaction appears to be
strong and this case is not considered. If q ≈ 1, in ad-
dition to p ≈ 1, the terms with α1, α2 can be neglected
and equation (9) turns into

i∂tψ +
1
2
A2∂

2
xψ + |ψ|2 ψ + iα3∂

3
xψ = 0. (55)

From (28) we have

1 − p2 =
4B2λ2

4B2λ2 +A2q2
. (56a)

Thus at p ≈ 1, q ≈ 1

2Bλ� 1. (56b)
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Now let us find the amplitude of pedestal at large dis-
tance from the soliton, i.e., const. in equation (36). Con-
sider, first, the case

α3 < 0 (57)

and assume that the point x moves along the contour C1

(Fig. 1) from the point x1 to the branch point iz1 and
then travels from iz1 to x (z1 equal to z0 with positive
sign). This gives

us (x) eiφs(x) + f(x) =

us(0)eiφs(0) exp


i

iz1∫
0

Q(x′)dx′ + i

x∫
iz1

k̃(x′)dx′


 , (58)

where we put, at the end, x1 → −0 and took into account
that iz1 is a branch point. Assuming also that x � δ, we
neglect us(x). Then we substitute (45) in (58) and use (47)
to obtain

f(x) = us(iz0) exp


iφs(iz0) + i

0∫
iz0

k̃ (x′) dx′ + ikx




(x� δ). (59)

Comparing this with (36) we get

const. = us(iz0) exp


iφs (iz0) + i

0∫
iz0

k̃ (x′) dx′




≈ us(iz0) exp [iφs (iz0) + kz0] . (60)

Here z0 is taken with the upper sign. From (43) it follows
that in case (57)

k = − |k| . (61)

Therefore

const. ≈ us(iz0)eiφs(iz0)

× exp
[
−π |k|

√
A2

4λ

(
1 +

2
π

arcsin p+ ζ

)]
, (62)

where ζ is given by (53a) in case (53b) and by (54c) in
case (54a). From (50) and (26), (27) and (30) it follows

us(iz0) ≈ u0
(1 + p)1/2

(1 − p2)1/4
(−ζ)−1/2

, (63a)

exp {iφs(iz0)} = exp

(
π

4

√
α1 + 2α2

α1 − (2/3)α2
+ iφs(0)

)
.

(63b)

Then at condition (53b) and negative α3 we have

const. ≈ u0

(
1 + p

1 − p

)1/4

eiφs(0)

×
(√

A2 |k|
λ

)1/2

exp
[
−π

√
A2 |k|
4λ

(
1 +

2
π

arcsin p
)
− π

4

]
.

(64)

This expression can also be used for estimations at√
1 − p2 ∼ λ

/√
A2 |k|. In this case

const. ∼ u0

(
1 − p2

)−1/4

× eiφs(0)

(
2
√
A2 |k|
λ

)1/2

exp
{
−π

√
A2 |k|
2λ

− π

4

}
. (65)

If
α3 > 0, (66)

equation (43) gives k > 0, U(k) < 0. Now we integrate
along the contour C2 as shown in Figure 1, where iz2 is
the branch point with z2 is given by equation (50) with the
lower sign. Then const. is given by (64), (65) with the re-
placement u0 → −iu0. The above results are in agreement
with the estimation of const. in reference [5].

Consider the transition to third-order NLS equa-
tion (55). In this case p ≈ 1, q ≈ 1. Then

const. ≈ u0Λ

(
λ√
A2 |k|

)(√
A2 |k|
λ

)1/2

exp
(
−π

√
A2 |k|
2λ

)
,

(67)
where Λ(W ) is a slow function of W = λ

/√
A2 |k|, which

may be of order ten. The explicit calculation of Λ(W ) is
rather tedious and will not be discussed here. We only add
that from equation (30) at p ≈ q ≈ 1, it follows u0 ≈ λ.

These results are obtained in the reference system
where the periodic wave is described by (21). If the chain
moves with velocity V , the corresponding solutions of
equation (1) can be found by means of Galilean trans-
formation

Ψ (X,T ) = ψ (x, t) exp [i (KX −ΩT )] , (68a)

where K and Ω are connected with the chain velocity V
by equations (7, 8). Using (21), we write

Ψp (X,T ) = Φ (x) eiKx exp
{
i

[
1
2
λ2 + (KV −Ω) t

]}
,

(68b)
where Φ (x) satisfies equation (23). Finding K(V )
from (7), we have

K =
1 −√

1 − 12α3V

6α3
. (69a)

Respectively
A2 =

√
1 − 12α3V . (69b)

Denoting
χ (x) = Φ (x) eiKx, (70)

we write

Ψp = χ (x) eiΛt (x = X − V T ) , (71)

where

Λ =
1
2
λ2 +KV −Ω =

1
2
λ2 +

1
2
K2 − 2α3K

3. (72)
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From (49, 51) and (23) we find the the following equation
for χ

− iV ∂xχ+
1
2
∂2

xχ+ |χ|2 χ+ iα1 |χ|2 ∂xχ

+ iα2χ∂x |χ|2 + iα3∂
3
xχ = Λχ. (73)

Of course, this equation also emerges by substituting (71)
into (1).

According to (22), Φ (x) is a periodic function with the
period 2π/Γ . Assume that

Γ = K/n,

where n is integer number. Then χ (x) is also a periodic
function and

χ (x− π/Γ ) = χ (x+ π/Γ ) . (74)

Near the ends of the interval of periodicity

χ (x) ≈ const.× eiκx, (75)

where const. is small.Substituting (75) into linearized
equation (73) we arrive at equation for κ

α3κ
3 − (1/2)κ2 − (Λ− κV ) = 0. (76)

Using (72, 37, 10) and (7), we rewrite this as

α3

[
κ3 − (k +K)3 − 3 (κ− k −K)K2

]
− 1

2

[
(κ−K)2 − k2

]
= 0.

This can be regarded as a cubic equation for κ−K; it has
only one real root κ−K = k. Therefore

κ = k +K. (77)

The nonlinear eigenfunction problem (73) with boundary
condition (75) was numerically solved in reference [5] and
it was demonstrated that numerical results are in agree-
ment with the above conclusions.

3.4 Resonantly radiating solitons

Define a cutoff operation, transforming Φ (x) into a single
pulse [5]:

Φc (x) = Φ (x) ρ (x) , (78)

where ρ (x) is a cutoff factor

ρ (x) =
1
2

[
tanh

(
x− x0 +∆x

γ

)]

−
[
tanh

(
x− x0 −∆x

γ

)]
. (79)

Here x0 is the center of the pulse and ∆x is the width
of Φc (x). According to (58), ρ (x) vanishes at |x− x0| →

∞ and the parameter γ characterizes the sharpness of van-
ishing. Assuming that γ is small enough and ∆x is such
that the factor ρ (x) cuts off only the wings without essen-
tially disturbing the pulse in Φ (x) (they can be properly
chosen by numerical tests) we then take Φc (x) as the ini-
tial condition to equation (9)

ψ (x, 0) = Φc (x) . (80)

So, initially we have an isolated soliton-like pulse. From
the numerical solution [5] we find, neglecting small tran-
sient effects, that the pulse (80) asymptotically develops
into

ψ(x, t) ≈ us(x) exp
[
iφs(x) + i

λ2

2
t

]

+ f(x) exp
(
i
λ2

2
t

)
Θ (Ux)Θ (|U | t− |x|) , (81)

where Θ(X) is the Heaviside function and U = U(k) is the
pedestal group velocity (42a). This result can be explained
as follows. The soliton, described by the first term in (81),
resonantly interacts with the wave of continuous spectrum
with frequency ω(k) = −λ2

/
2. It can be, therefore, reso-

nantly emitted and absorbed by the soliton. However, the
incident wave is now absent. So the soliton emits the res-
onant wave at the expense of its own energy and momen-
tum. The second term in (81) describes such a wave. It is
a wave train consisting of the piece of pedestal wave (40)
that is radiated by the soliton in the direction of group
velocity U and has length |U | t. At condition (52), the
coupling between the soliton and radiated wave is small.

The radiation causes an attenuation of the soliton.
However, due to the smallness of radiation we may neglect
the soliton damping during rather large time intervals of
radiation. This can be called adiabatic approximation and
expression (81) is written in this approximation. The am-
plitude of f(x) in the adiabatic approximation is given
by (64) and (65). All these conclusions were confirmed by
numerical modeling [5]. The numerical experiments, per-
formed in this work directly for equation (1), show that
the radiating solitons (in fact, quasisolitons) play an im-
portant role in the long time evolution of waves described
by the ENLS equation.

Considering p ≈ 1, q ≈ 1 we arrive at the radiating
solitons described by the third-order NLS equation (55).
In this case the amplitude of radiation is expressed by (67).
It is consistent with earlier works [7–12] on the third-order
NLS equation.

The phenomenon of soliton radiation results in the ir-
reversible decay of solitons; therefore it takes place only if
the ENLS equation is not completely integrable. We now
return to the integrable ENLS equations (which are, in
fact, exceptional) and consider in more detail the soliton
properties in these cases.



V.I. Karpman: Extended NLS equation and Galilean transformation 347

4 Integrability conditions of the ENLS
equation

4.1 Necessary condition of the integrability

The integrability conditions for the ENLS equation fol-
low from the Painlevé conjecture. The Painlevé analysis of
equation (1) at α2 �= 0 [13] shows that it is integrable only
in case (4). The ISM for this case have been developed, as
it was mentioned above, by Sasa and Satsuma [4]. Making
a similar Painlevé analysis of equation (1) at α2 = 0, one
arrives at integrability condition (3). Thus the necessary
condition of integrability is

α1 = 6α3. (82)

Perform the Galilean transformation (5–7) with

K = 1/α1. (83a)

Then from (10, 11) it follows

A2 = 0, q = 0 (83b)

and equation (9) takes the form

∂tψ + 6α3 |ψ|2 ∂xψ + α2ψ∂x |ψ|2 + α3∂
3
xψ = 0 (84)

that can be viewed as complex modified Korteweg-de
Vries (CMKdV) equation. One can easily prove that any
particular CMKdV equation can be transformed to the
form (84) by an appropriate transformation of indepen-
dent and dependent variables, i.e., equation (84) can be
considered as the general form of CMKdV equation. We
therefore conclude that

A necessary condition of the complete integrability of
ENLS equation is that there exists a reference frame,
where equation (1) takes the form of CMKdV equation.

On the other hand, the Painlevé test of equation (84)
shows that it is completely integrable only in two cases:
α2 = 3α3 and α2 = 0. In the first of them, the in-
verse scattering transform has been developed by Sasa
and Satsuma [4]. In the second case, the L−A pair can be
easily found by the proper generalization of Wadati the-
ory [14], elaborated for the real MKdV equation. There-
fore both equations (84) and (1) are completely integrable
if α1 = 6α3 and, in addition, α2 = 3α3 or α2 = 0.

4.2 Solitons of the integrable ENLS equation

In some cases, the general form of soliton solutions is
rather difficult to find even for integrable equations. Then
it may be helpful to employ an approach based on the
Gelfand-Levitan-Marchenko (GLM) equation. This can be
demonstrated for Sasa-Satsuma case (4), when the ENLS
equation has the form

i∂TΨ +
1
2
∂2

XΨ + |Ψ |2 Ψ

+ iε
(
∂3

XΨ + 6 |Ψ |2 ∂XΨ + 3Ψ∂X |Ψ |2
)

= 0, (85)

where ε = α3. According to reference [4], the one-
soliton solution of GLM equation, associated with equa-
tion (85), is

Ψ (X,T ) =
2η |C| eiB

(
eA + Ce−A

)
e2A + |C|2 e−2A + 2 |C|2 . (86)

Here

A = η
{
X − [ξ + ε

(
η2 − 3ξ2

)]
T −X(0)

}
, (87a)

B = ξ

{
X +

[
η2 − ξ2

2ξ
+ ε

(
ξ2 − 3η2

)]
T −X(1)

}
,

(87b)

C = 1 − iη

ξ − 1/6ε
. (88)

Now consider two limit cases.

(i): ε� 1, ξ � 1/6ε, η � 1/6ε.

Then
|C| ≈ 1, argC ≈ −6ε. (89)

and expression (86) is reduced to

Ψ (X,T ) ≈ η exp
[
iξ

(
X − η2 − ξ2

2ξ
T −X(1)

)]

× sec h
[
η
(
X − ξT −X(0)

)]
. (90)

It describes the NLS soliton with amplitude η and ve-
locity ξ. One can see that the maximum of |Ψ | in equa-
tion (86) becomes flatter with the increase of |C|. At
|C| >2, there are two maximums of |Ψ |.
(ii): ε� 1, 6ε

(
ξ − 1

6ε

)� 1.

Now we can simplify (86) assuming |C| → ∞. Then

Ψ (X,T ) ≈
(
1
/√

2
)
iηeiB sec h

(
A+ ln

√
2
)
, (91)

where A and B are given by (87a, b) with ξ = 1/6ε, i.e.,

A ≈ η

[
X −X(0) −

(
εη2 +

1
12ε

)
T

]
, (92a)

B ≈ ξ

[
X −X(1) −

(
8εη2

3
+

1
18ε

)
T

]
. (92b)

Comparing this with (18) and (19a, b) we see that ex-
pressions (91–92a, b) represent a PT soliton. Unlike (90),
equations (91–92a, b) do not approach the NLS soliton at
ε → 0. This is because at large C the third-order disper-
sion term in equation (1) essentially competes also with
the nonlinear terms containing α1, α2.

Now let us consider the Hirota conditions (3), intro-
duced in reference [3]. Then equation (84) takes the form

∂tψ + 6ε |ψ|2 ∂xψ + ε∂3
xψ = 0. (93)

The one-soliton solution of this equation can be easily
found; it reads

ψs(x, t) = a sec h [a (x− ct)] exp [i (px− σt+ ϑ)] , (94)
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where

c = −3εp2 + εa2, (95a)

σ = −εp3 + 3εpa2, (95b)

with arbitrary parameters a, p and ϑ. At p = ϑ = 0
we have solitons of the real MKdV equation. Hirota [3]
has found N-soliton solutions composed at x → ±∞ of
complex solitons (94). At p = ϑ = 0 they turn into
the N-soliton solutions of real MKdV equation derived
by Wadati [14]. Performing the Galilean transformation
of equation (94), we arrive at the PT solitons at α1 =
6α3 = 6ε expressed by equations (18–20). Thus at Hirota
conditions, the solitary waves are nothing more than PT
solitons. As it was mentioned above, at α1 = 6α3 = 6ε
there exists L − A pair that is clearly a modification of
the pair found by Wadati [14].

5 Self-similar solutions

We restrict ourselves to the integrable cases. Then we
can start with the CMKdV equation (84) and consider
cases (3) and (4). Equation (84) is, in fact, the system of
equations for ψ and its complex conjugate. Replacing

ψ ⇒ R, ψ∗ ⇒ S, (96a)

and using notations

ε = α3, µ = α2, (96b)

we arrive at the system of equations

∂tR+ (6ε+ µ)RS∂xR+ µR2∂xS + ε∂3
xR = 0, (97a)

∂tS + (6ε+ µ)RS∂xS + µS2∂xR+ ε∂3
xS = 0. (97b)

This system admits a self-similar Ansatz

R (x, t) = (3t)−1/3
r (z) , (98a)

S (x, t) = (3t)−1/3
s (z) , (98b)

z = (3t)−1/3
x. (99)

Substituting (98a, b) and (99) into (97a, b) we have

εr′′′ + (6ε+ µ) srr′ + µr2s′ − (zr)′ = 0, (100a)

εs′′′ + (6ε+ µ) rss′ + µs2r′ − (zs)′ = 0, (100b)

where the prime means derivative over z.
Equations (100a, b) have a particular solution r = s,

corresponding to the real MKdV equation that follows
from (84) at real initial conditions. Then r satisfies equa-
tion

εr′′′ + 2 (3ε+ µ) r2r′ − (zr)′ = 0. (101)

After one integration, we have

εr′′ +
2
3

(3ε+ µ) r3 − zr = const. (102)

This is the second Painlevé equation for the second
Painlevé transcendent PII . All its movable singularities
are poles [15], in agreement with the complete integrabil-
ity of the real MKdV equation.

We now look for the solution of equations (100a, b) in
the form of Laurent series

r (z) = a0 +
∞∑

n=1

[
An

(z − z0)
n + an (z − z0)

n

]
, (103a)

s (z) = b0 +
∞∑

n=1

[
Bn

(z − z0)
n + bn (z − z0)

n

]
. (103b)

As far as we consider an integrable variety of equa-
tion (84), the system (100a, b) should be also integrable.
Then, according to the Painlevé conjecture, the movable
singularities in (103a, b) can only be poles; so the num-
ber of terms containing (z − z0)

−n must be finite. Then,
substituting (103a, b) into (100a, b) we find

A1B1 = − 3ε
3ε+ µ

, (104)

An = Bn = 0 (n > 1). (105)

For definiteness, we assume

ε > 0, 3ε+ µ > 0. (106)

Then we write

r (z) =
A1

z − z0
+

∞∑
n=0

an (z − z0)
n, (107a)

s (z) =
B1

z − z0
+

∞∑
n=0

bn (z − z0)
n
. (107b)

Deriving equations for an, bn, we have at n = 0, 1

(6ε+ 3µ)B1a0 + (6ε+ µ)A1b0 = 0, (108a)
(6ε+ µ)B1a0 + (6ε+ 3µ)A1b0 = 0, (108b)

2µB1a1 + 6εA1b1 = z0 − F1/A1, (109a)
6εB1a1 + 2µA1b1 = z0 −G1/B1, (109b)

where

F1 = (6εA1b0 + µB1a0) a0, (110a)
G1 = (6εB1a0 + µA1b0) b0. (110b)

For n ≥ 2, we write

X (n)B1an + Y (n)A1bn = B1K (n) , (111a)
Y (n)B1an +X (n)A1bn = A1Λ (n) . (111b)

Then

X (n) = ε
[
3ε (n− 1)

(
n2 − 2n− 6

)
+ µ

(
n3 − 3n2 − n+ 9

) ]
, (112a)

Y (n) = 3ε [6ε− µ (n− 1)] , (112b)
K (n) = (3ε+ µ) [(n− 2) (an−3 + z0an−2) + Fn] ,

(113a)
Λ (n) = (3ε+ µ) [(n− 2) (bn−3 + z0bn−2) +Gn] ,

(113b)
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and Fn, Gn are third-order nonlinear forms composed
of A1, B1 and am, bm with m ≤ n− 1. In particular,

F2 = (6ε− µ) (A1b1 −B1a1) a0, (114)

F3 = (6ε+ µ)
[
A1 (a0b2 + b0a2) − 2 (A1b0 +B1a0) a2

− (B1a1 + a0b0) a1

]
− µ

(
4A1a0b2 − 2B1a0a2

+ a2
0b1 + 2A1a1b1 −B1a

2
1

)
. (115)

Expressions for Gn can be obtained by the rule

A1 ⇔ B1, am ⇔ bm. (116)

In fact, this rule is applicable also to (111a, b–113a, b).
Solving (111a, b), we have

B1an =
B1X(n)K (n) −A1Y (n)Λ (n)

X2 (n) − Y 2 (n)
, n ≥ 2. (117)

A similar expression for A1bn follows from (116). Defining

∆ =
3ε2

3ε+ µ

[
X2 (n) − Y 2 (n)

]
, (118)

we first investigate the roots of equation

∆ = 0. (119)

This can be easily done by means of expressions

X (n) + Y (n) = (3ε+ µ) ε (n− 3)
(
n2 − 4

)
, (120)

X (n) − Y (n) = ε
[
3εn (n+ 1) (n− 4)

+ µ
(
n3 − 3n2 + 2n+ 6

) ]
. (121)

In particular, for the integrable cases

X (n) − Y (n) = 3ε2n (n+ 1) (n− 4) (µ = 0), (122)

X (n) − Y (n) = 6ε2
(
n2 − 1

)
(n− 3) (µ = 3ε) . (123)

Respectively, equation (119) has roots n = 2, 3, 4 at µ = 0,
and n = 1, 2, 3 at µ = 3ε. In the first case equation (84)
turns into the Hirota CMKdV equation, while in the sec-
ond case we arrive at the Sasa-Satsuma CMKdV equation

∂tψ + 6ε |ψ|2 ∂xψ + µψ∂x |ψ|2 + ε∂3
xψ = 0. (124)

(i) Let us first investigate the Laurent series (103a, b)
for the solution of the Hirota equation. From (104) it fol-
lows

A1B1 = −1. (125)

Equations (108a, b) and (109a, b) give

B1a0 +A1b0 = 0, (126)
6εB1a1 = z0 − 6εa0b0, (127a)
6εA1b1 = z0 − 6εa0b0. (127b)

Therefore
B1a1 −A1b1 = 0. (128)

Using these equations we have

F1 = −G1 = 6εA1b0a0, (129a)
F2 = G2 = 0. (129b)

Equations (111a, b) at n = 2 give only one equation

B1a2 −A1b2 = 0 (130)

(the second equation coincides with (109) because equa-
tion (98) has a root n = 2). Equations (111a, b) at n = 3
are reduced to

6ε (B1a3 −A1b3) = −B1 (a0 + a1z0 + F3) , (131a)
6ε (B1a3 −A1b3) = A1 (b0 + b1z0 +G3) . (131b)

This system is also degenerated (because equation (119)
has a root n = 3). The condition of compatibility of equa-
tions (131a, 131b) is

B1 (a0 + F3) +A1 (b0 +G3) + z0 (B1a1 +A1b1) = 0.
(132a)

Using (115), (126–128) and (130), we get a simplified ex-
pression for F3

F3 = −6εa1 (B1a1 + a0b0) = −z0a1. (132b)

Substituting (132b) into (132a), we find that the compat-
ibility condition is fulfilled and system (131a, b) can be
reduced to a single equation

12ε (A1b3 −B1a3) = B1a0 −A1b0. (133)

Now consider n = 4. Then equation (119) is again satisfied
and so system (111a, b) is degenerated: it looks as

6ε (B1a4 +A1b4) = B1 [2 (a1 + z0a2) + F4] , (134a)
6ε (B1a4 +A1b4) = A1 [2 (b1 + z0b2) +G4] . (134b)

Calculating F4 at µ = 0, we have

B1F4 = 6ε [a1b2 − (a0b3 + b0a3) −B1a1 (a1b0 + b1a0)
−3B1a3 (B1a0 +A1b0)] − 2z0B1a2. (135)

Taking into account (128) and (130), we can write the
solvability condition of system (134a, b) as

B1F4 = A1G4. (136)

This is satisfied due to (116). Then system (134a, b) is
reduced to one equation, e.g. (134a).

Thus equations (111a, b) determine an, bn (n ≤ 4)
not uniquely: the solutions contain four arbitrary quan-
tities. One more arbitrariness is contained in the so-
lution of equation (125) and, finally, z0 is also arbi-
trary. As for equations (111a, b) at n > 4, we see
from (118), (120) and (122) that they uniquely deter-
mine an, bn through A1, B1 and am, bm(m < n). From
that it follows that expressions (108a, b) contain six arbi-
trary constants and therefore (108a, b) represent the gen-
eral solution of ODE system (100a, b) that must contain
six arbitrary constants of integration.
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(ii) Consider now the case µ = 3ε, when equation (84)
turns into the Sasa-Satsuma equation, the second inte-
grable CMKdV equation. Its solution can be written in
the form (107a, b) as well. Now the coefficients of these
Laurent series are determined by equations

A1B1 = −1/2 (137)

[following from (104)] and

a0 = b0 = 0, (138)
B1a1 −A1b1 = C1, (139)

A1b2 = B1a2 = C2, (140)
B1a3 +A1b3 = C3, (141)
B1a3 −A1b3 = C4. (142)

Here Cn(n = 1, 2, 3, 4) are arbitrary parameters. The
determinant of system (111a, b) is

∆ = 6ε2
(
n2 − 1

) (
n2 − 4

)
(n− 3)2 . (143)

So, now the systems of equations for an, bn with n > 3
are not degenerated. In additions to Cn, we have two
more arbitrary parameters: one follows from (137) and
the second is z0. We therefore conclude that the coeffi-
cients in (107a, b) depend on six arbitrary parameters,
corresponding to six arbitrary constants of integration in
the general solution of ODE system (100a, b). Thus ex-
pressions (107a, b) indeed represent the general solution
of that system. In both cases (i) and (ii) the general solu-
tion has only movable poles as singularities, in agreement
with the Painlevé conjecture.

Using the Galilean transformation (5), we obtain the
corresponding solutions of ENLS equation (1) with the
coefficients satisfying conditions (3), (4). It is not diffi-
cult to see that there are no other self-similar solutions of
equation (84).

6 Conclusions

We have considered, from a single point of view based on
the systematic use of Galilean transformation (GT), im-
portant solutions of the ENLS equation (Potasek-Tabor
solitons, nonlinear periodic waves, radiating solitons,
etc.). The GT, being applied to equation (1), transforms

it to equation (9) which is solved in the intrinsic frame
of a wave. After appropriate Galilean transformation we
then arrive at the solution of equation (1) describing the
wave in question moving with velocity V . This approach
leads also to a necessary condition of the integrability of
ENLS equation that reads: there should exist a GT trans-
forming equation (1) to a complex modified Korteweg-de
Vries (CMKdV) equation. The Painlevé test of CMKdV
equation then shows that it is integrable only at Hirota
and Sasa-Satsuma conditions [3,4]. So the ENLS equa-
tion is integrable only in these cases (Sect. 4). The self-
similar solutions of CMKdV equation confirm this conclu-
sion (Sect. 5).

The GT transformation can be readily used also for
the 4th order ENLS equation [16]. More general extensions
will be considered elsewhere.
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